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Convective instabilities of an autocatalytic propagating chemical front in a porous
medium are studied. The front creates temperature and concentration gradients which
then generate a density gradient. If the front propagates in the direction of the gravity
field, adverse density stratification can lead to Rayleigh–Taylor or Rayleigh–Bénard
instabilities. Differential diffusivity of mass and heat can also destabilize the front
because of the double-diffusive phenomena. We compare the stability boundaries
for the classical hydrodynamic case of a bounded layer without reaction and for
the chemical front in the parameter space spanned by the thermal and solutal
Rayleigh numbers. We show that chemical reactions profoundly affect the stability
boundaries compared to the non-reactive situation because of a delicate coupling
between the double-diffusive and Rayleigh–Taylor mechanisms with localized density
perturbations driven by the reaction. In the reactive case, a linear stability analysis
identifies three distinct stationary branches of the instability. They bound a region
of stability that shrinks with increasing Lewis number, in marked contrast to the
classical double-diffusive layer. In particular a region of global and local stable
stratification is susceptible to a counter-intuitive mechanism of convective instability
driven by chemistry and double-diffusion. The other two regions display an additional
contribution of localized Rayleigh–Taylor instabilities. Displaced-particle arguments
are employed in support of and to elucidate the entire stability boundary.

1. Introduction
Convective motions can be driven in a quiescent fluid due to adverse density

stratification in the gravitational field. In Rayleigh–Bénard convection the density field
is driven by temperature gradients. The presence of an additional diffusing component
can drive doubly-diffusive instabilities. In the classical case both temperature and
concentration differences are imposed on the fluid by the environment as boundary
conditions on surfaces located a finite distance apart. Using linear theory, Baines &
Gill (1969) determined the stability boundaries. The case of a saturated porous layer
was treated by Nield (1968). More detail is given in the books by Turner (1973) and
Nield & Bejan (1992). When both thermal RT and solutal Rc Rayleigh numbers are
positive the instability is in the direct mode, while stability is obtained when both are
negative. The double-diffusive mechanisms operate when they are of different signs.
Direct double-diffusive fingering modes are observed when the Rayleigh number of
the slower diffusing component (usually, and here assumed, the concentration) Rc > 0
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and RT < 0, even in a region of stable stratification. Oscillatory double-diffusive modes
are triggered when RT > 0 and Rc < 0 when the system is unstably stratified.

Several applications, such as reactive petroleum extraction, separation techniques
in chromatographic columns and geological flows to name a few, may feature flow
instabilities of reactive systems in porous media. In this context, it is of interest to
analyse the influence of chemical reactions on this general picture of buoyancy-driven
hydrodynamic instabilities. Propagating reaction–diffusion chemical fronts provide
a mechanism for creation of internal concentration and temperature gradients.
Rayleigh–Taylor instabilities immediately set in as a fingering instability of the
diffusive interface if the density stratification is unstable (see Pojman & Epstein
1998; De Wit 2004 and references therein). Double-diffusive instabilities driven by
chemical fronts are also possible if molar volume changes and heat are generated
simultaneously upon reaction (Pojman & Epstein 1990; Kalliadasis, Yang & De Wit
2004). Propagating chemical fronts provide a simple model system in which to study
the changes in hydrodynamic stability induced by the chemical reactions.

In the present paper, we study theoretically all possible buoyancy-driven
instabilities of such chemical fronts travelling in porous media, focusing on the way
chemical reactions change the classical stability boundaries of the pure Rayleigh–
Bénard, Rayleigh–Taylor and double-diffusive instabilities. We show that chemistry
significantly affects the stability domains and that the classical intuitive stability
picture of stratified fluids in the gravity field sketched at the beginning of the
introduction becomes more complicated in reactive fluids. To demonstrate this,
we employ scales that cast the problem in terms of the usual Rayleigh numbers
and compute linear stability boundaries in the (RT , Rc)-plane for different Lewis
numbers Le > 1. The region of convective instability in this case of intrinsic chemically
generated density gradients in an infinite medium is much larger than its classical
hydrodynamic counterpart. Wholly unexpected instabilities where the system is
globally and locally stably stratified are uncovered. A chemically driven instability
mechanism is identified and the stability boundaries explained by displaced particle
arguments. Moreover all the instability branches are stationary.

The outline of this article is as follows: in § 2, we formulate the model, introduce the
important dimensionless parameters of the problem and develop the linear stability
analysis. In § 3, we present the stability boundaries of both the pure hydrodynamic
and chemically driven cases before ending with a discussion.

2. Formulation
A two-dimensional porous medium of infinite extent is saturated with reactants. An

autocatalytic chemical front is initiated to propagate upward with a velocity v∗ (with
the superscript ∗ refering to a dimensional quantity). The motion is described in a
coordinate system (z∗, y∗) moving with speed v∗ and attached to the front (located at
z∗ = 0), with the gravity field aligned along −z∗ and y∗ being the transverse direction.
The reaction–diffusion convectionless state is characterized by the concentration c∗

of the chemical species that determines the density. As the reaction is exothermic,
the concentration front drives a temperature T ∗ front. We assume a linear density
dependence on c∗ and T ∗ according to

ρ∗ = ρ0{1 − αc(c
∗ − c∗

0) − αT (T ∗ − T ∗
0 )} (2.1)

where ρ0 is the mixture density at reference temperature T ∗
0 and at concentration

c∗ = c∗
0 with c∗

0 being the initial concentration of c∗ in the reagents. The concentration
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and thermal expansion coefficients are respectively αc and αT . If both αc > 0 and
αT > 0 then we have lighter products due to the contributions of both c∗ and T ∗ and
the upward propagating reaction–diffusion front is gravitationally unstable.

The reaction–diffusion base state determines the prevailing concentration gradient,
rates of reaction and propagation speed and hence the important scales of the
problem. These are �c = c∗

1 − c∗
0 for concentration c∗ − c∗

0 with c = c∗
1 being the

concentration of c in the products, φτ = φ(γ�c2)−1 for time with γ the kinetic
constant of the reaction and φ the porosity, U =

√
Dc/τ for velocity with Dc the

medium diffusion coefficient, and l =
√

Dcτ for length. The temperature T ∗ − T ∗
0 is

scaled by �T = −�H�c/ρ0cp , where �H is the heat of reaction and is negative
for the exothermic reaction considered here, and cp is the constant pressure specific
heat of the solvent. In a saturated porous medium the incompressible flow field is
governed by the non-dimensional Darcy equations (Khan & Zebib 1981) written
here with pressure incorporating the hydrostatic pressure and scaled by µDc/K

where K and µ are the permeability and dynamic viscosity, respectively. Assuming
φ is numerically equal to the ratio of the fluid to the medium heat capacities, the
dimensionless equations of the problem take the form

∇ · u = 0, (2.2a)

u = −∇p + (RT T + Rcc)ez, (2.2b)

∂c

∂t
− v

∂c

∂z
+ u · ∇c = ∇2c + F (c), (2.2c)

∂T

∂t
− v

∂T

∂z
+ u · ∇T = Le∇2T + F (c), (2.2d)

with boundary conditions

u ∼ 0 as z → ±∞, (2.3a)

c, T ∼ 0 as z → ∞, (2.3b)

c, T ∼ 1 as z → −∞, (2.3c)

with ez being the unit vector pointing in the z-direction. For simplicity, we consider
the simple cubic kinetic scheme F (c) = c(1 − c)(c + d) with d =0.0021 a typical
experimental value for chemical fronts (Vasquez, Wilder & Edwards 1996; De Wit
2001, 2004). The Lewis number Le = DT /Dc with DT being the medium thermal
diffusivity. Equations (2.2) have been written in the Boussinesq approximation and all
physical parameters of the fluid are assumed constant. This is justified as autocatalytic
fronts typically imply relative solutal and thermal density jumps across the front that
are of the order of 10−4 as the solutions are dilute and the temperature changes only
of a few Kelvin. It should be noted that with K = w2/12 these equations also model
the flow in a Hele-Shaw cell of small gap width w. The thermal and solutal Rayleigh
numbers are defined by

RT =
gαT K�T

νU
, Rc =

gαcK�c

νU
(2.4)

where ν is the kinematic viscosity. Positive Rayleigh numbers imply static instability
when the wave-front speed v > 0, i.e. for fronts ascending in the gravity field. Negative
stabilizing Rayleigh numbers can result from the four different combinations of the
signs of αT and αc (with �T < 0 as appropriate for endothermic reactions), or front
propagation in the direction of gravity and allow the study of the double-diffusive
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phenomenon.† Consider now the two-dimensional transverse instability of the basic
ascending reaction–diffusion front cs, v, Ts . This base state is obtained as solution of
equations (2.2) and (2.3) with u = 0 and takes the form

cs(z) =
{
1 + ez/

√
2
}−1

, v =
1 + 2d√

2
, Ts(z) (2.5)

with Ts(z) = cs(z) for Le = 1 and numerically determined for Le > 1. We analyse the
stability of this base state with regard to possible flows driven by density gradients
as described by the system (2.2) and (2.3). Linear stability analysis leads to an
eigenvalue problem for the perturbations {c, T , u}(z) exp (iky + σ t) in respectively the
concentration, temperature and vertical velocity (D’Hernoncourt et al. 2006):

σc − vc′ + c′
su = c′′ − k2c +

dF

dc

∣
∣
∣
cs

c, (2.6a)

σT − vT
′
+ T ′

s u = Le(T
′′ − k2T ) +

dF

dc

∣
∣
∣
cs

c, (2.6b)

u′′ − k2u = −k2(RT T + Rcc), (2.6c)

c, T , u ∼ 0 as z → ±∞. (2.6d)

Here k, σ are the wavenumber and growth rate of the perturbations, primes
correspond to derivatives with respect to z and dF/dc is evaluated at the base
state (2.5). We solve (2.6) by both-second order finite differences and pseudospectral
Chebyshev methods. For each RT and Le, and for each k, Rc is calculated so that

max(Re{σ (Rc, k, Le, RT )} = 0. (2.7)

The critical solutal Rayleigh number Rccr
and the critical wavenumber kcr are

determined by minimization over k. Long computational domains in the z-direction
were required in order to accurately resolve the base state and the eigenfunctions, in
particular at the largest values of Le computed here. A truncated infinity of |z| � 300
is found necessary with Le = 10 and required about 300–500 spectral coefficients or
1000–2000 mesh points for each variable. For the finite differences method the size of
the domain is taken up to 800 and the mesh size down to dz = 0.25.

3. Results
It is instructive to first recall the classical model of a horizontal layer of height h

with the lower boundary maintained at c∗+�c and T ∗+�T while the upper boundary
is kept at c∗ and T ∗ (Nield & Bejan 1992). With the scales h, h2/Dc and Dc/h for
respectively length, time, and velocity, the linear stability problem is governed by (2.6)
with F = v = 0, cs = Ts = 1 − z and the boundary conditions imposed at z =0 and 1.
The critical eigenfunction is sin(zπ) and the dispersion relation is (Nield & Bejan
1992)

k2 + π2 =
k2RT

Le(k2 + π2) + σ
+

k2Rc

(k2 + π2) + σ
, (3.1a)

† Note that in D’Hernoncourt, Zebib & De Wit (2006), the negative sign present in the definition
of the Rayleigh numbers (2.4) and of the density (3.4) is due to the consideration of a downward
moving front while here we analyse an upward moving one to correspond to usual conventions
used in the double-diffusive literature.
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Figure 1. Classical hydrodynamic stability boundaries for a finite porous layer with Le > 1.
The basic state is stably stratified below the line RT + Rc = 0.

with

RT =
gαT Kh�T

νDc

, Rc =
gαcKh�c

νDc

. (3.1b)

Note that, contrary to the classical case, the thermal Rayleigh numbers in the
definitions (2.4) and (3.1b) are here constructed using Dc instead of DT . The stationary
branch of the stability boundary is given by

k = π,
RT

Le
+ Rc = 4π2 (3.2)

which corresponds to the bold curve in figure 1. For Rc = 0, the threshold above
which the Rayleigh–Bénard instability sets in is RT = 4π2Le, i.e. it is an increasing
function of Le. For RT =0, the corresponding solutal threshold is Rc =4π2. On the
oscillatory branch obtained for Le > 1 we have

k = π, RT + Rc = 4π2(Le + 1), −Rc >
4π2

Le − 1
(3.3)

drawn as a thin (partly dashed) line on figure 1. The complete stability boundary
corresponding to Le > 1 shown in figure 1 can be summarized as follows: it is
observed that above the threshold values the flow is unstable to the direct mode
in quadrant 1 (Rc � 0 and RT � 0), and stable in quadrant 3 (Rc � 0 and RT � 0).
The direct double-diffusive regime operates in quadrant 4 (Rc � 0 and RT � 0) and
oscillatory double-diffusive modes act in quadrant 2 (Rc � 0 and RT � 0).

We now turn to the analysis of the influence of chemical reactions on this stability
diagram by focusing on the case of the chemical front. Stationary stability boundaries
for Le = 1, 3 and 10 are shown in figure 2. With Le = 1, Ts = cs as given in (2.5) and
the stability boundary is simply the straight line RT = −Rc. This is easily understood
by inspecting the basic dimensionless density profile

ρ = −RT T − Rcc (3.4)
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Figure 2. Stability boundaries for the case of a chemical front. For Le = 1, the system is
stable below the bold line RT = −Rc . For Le = 3 and 10, the stability domain is the tongue
delineated by the dashed and full lines respectively. In particular, the flow is unstable when
Rc = 0 and RT <R1 = −20.67 (Le = 3), and Rc = 0 and RT < R1 = −9.51 (Le =10).

where ρ = (gK/νu)(ρ∗/ρ0). The basic density profile gradient is

dρs

dz
= −RT

dTs

dz
− Rc

dcs

dz
(3.5)

which, for Le = 1 and using (2.5), gives

dρs

dz
=

RT + Rc√
2

ez/
√

2

(
1 + ez/

√
2
)2

. (3.6)

This vertical gradient of the basic density is positive above the line RT = −Rc for an
ascending front and is thus unstably stratified with regard to buoyancy. The sharp
interface created by the chemical front between the products and reactants triggers
the instability as soon as RT + Rc > 0 and thus the instability threshold observed
in quadrant 1 of figure 1 is no longer present. This is the first important difference
between the reactive and non-reactive cases.

With Le > 1 the flow is unstable above the upper branches Rc � 0 and RT >RTcr
> 0

of quadrant 2, below the lower branches Rc � 0 and RT < RTcr
< 0 of quadrant 3, and

in almost all of quadrant 4 except where it is stable in the small region bounded
by RT � R1(Le) < 0 and Rc <Rccr

> 0. It is thus seen that the region of stability has
shrunk considerably and continues to get smaller as Le increases, in sharp contrast
to the classical case in figure 1.

Consider first the chemically driven instability at the lower branches in quadrant 3
with Rc � 0 and RT < RTcr

< 0 shown in figure 2. Here both RT and Rc < 0 so that
according to (3.5), dρs/dz < 0 throughout the field as Ts and cs are decreasing
functions of z and stability is expected. A physical explanation of this light-over-
heavy gravitational instability emerges from an examination of the basic profiles in
figure 3 with Le = 10 in the region where F (z) increases as a particle is displaced
upward. Because Le > 1 slower species diffusion allows the displaced particle to
maintain its concentration. Thus both the energy and concentration chemical sources
associated with the displaced particle are smaller than those of the surroundings
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Figure 3. The basic profiles cs, Ts and Fs driving the new instability (Le = 10). Our physical
argument predicts local instability of a stably stratified upward moving front with RT < 0 and
Rc � 0 in the area where dF/dz > 0.

(because dF/dz > 0), hence it can be at a lower temperature and concentration. Since
(3.4) in this case becomes

ρ = |RT |T + |Rc|c, (3.7)

the particle displaced upward can be lighter than its neighbours; it may continue
to rise. This chemically driven mechanism of instability is operative only in the
region where dF/dz > 0. In the zone where the gradient has opposite sign, i.e. where
dF/dz < 0, the displacement argument explained above leads to stability. Indeed,
in that case, the reaction is more active inside the particle displaced upwards
which thus becomes hotter and more concentrated in products (larger T and c).
According to (3.7), the particle is then heavier than its surroundings and comes back
to its initial position. Hence, as the unstable region with dF/dz > 0 lies below a
region with dF/dz < 0, it follows that a region of local chemical stability supercedes
the region of local instability. This is also revealed by the critical eigenfunctions
shown in figure 4 (with the infinity norm= 1) where the disturbances are largest
below the advancing chemical front centred at z = 0 and moving in the direction
of positive z. Note that this new instability mode is magnified at larger |RT | since
according to (3.7) small changes in T are more effective in changing the density at
larger |RT |, and at larger Le > 1 because slower mass diffusion results in a larger
difference in the chemical sources associated with the displaced particle and its new
environment. This is clearly supported by the linear stability calculations in figure 2.
In figure 4, we also plot the value of the most unstable wavenumber kmax along
with the corresponding maximum growth rate σmax . For a fixed Rc, the growth rate
and the corresponding wavenumber are increasing when RT is decreased below RT cr ,
confirming that the system becomes more unstable with decreasing RT . The threshold
RT cr is also decreased with decreasing Rc < 0: in this case, static stability increases
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Figure 4. (a) Most unstable linear eigenfunction with Rc = −5, RT = −30 (Le = 10). The
perturbation is largest below the front in the zone where dF/dz > 0. (b) Variations of maximum
growth rate and (c) corresponding wavenumber with RT at two fixed values of Rc .

and the magnitude of RT < 0 necessary to drive instability must increase to overcome
the additional static stability imposed by Rc < 0.

Quadrant 3 is thus characterized by a chemically driven instability of a solute-poor
and hot fluid overlying a solute-rich and cold one. Quadrants 2 and 4 are also clearly
affected by the chemical reactions. A close examination of eigenfunctions as well as
the most unstable growth rates and wavenumber shows that in these quadrants, the
stability domain results from a mixture of the chemically driven mechanism explained
above and of local unstable Rayleigh–Taylor zones.

Let us first examine quadrant 2 where the solutal effect is stabilizing (Rc < 0) while
the thermal one is destabilizing (RT > 0). When Le > 1, the thermal front is more
spread out than the concentration front and the system therefore exhibits localized
zones of static Rayleigh–Taylor thermally driven instability with dρs/dz > 0 ahead of
the front, as shown in figure 5 where we plot ρs(z) and the eigenfunctions on the
same graphs.

In addition the chemical mechanism drives an unstable region behind the front.
Again because Le > 1, slower species diffusion allows the particle displaced upward
in the zone where dF/dz > 0 to maintain its concentration while quickly reaching
the same temperature as the environment. The chemical source associated with the
displaced particle is smaller than that of the surroundings, hence it can evolve to
a lower temperature and concentration than the surroundings and continue to rise.
Since in this case

ρ = −RT T + |Rc|c (3.8)

there is a competition between RT and Rc with a lighter displaced particle resulting
owing to both the larger |Rc| and the faster tendency to thermal equilibrium with
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Figure 5. Similar to figure 4 with (a) most unstable linear eigenfunction along with the
basic density profile ρs(z) for the critical point in quadrant 2 where Rc = −33.3 and
RT = 9.5 (Le = 10). The large positive value of ρs for z < 0 is not shown here on this scale.
The locally unstable density stratification ahead of the front drives locally a Rayleigh–Taylor
(R-T) instability while the chemical mechanism operates below the front.

Le > 1. This scenario is also confirmed by the eigenfunctions in figure 5 where the
disturbance is seen to take place both behind and ahead of the advancing front.
Here however the instability is not inhibited by an overlying stable region. This
probably explains the very small increase in the magnitude of RTcr

associated with
the upper branch, with decrease in −Rc, compared with the lower branch. Figure 5
also shows that the growth rate and wavenumber of the most unstable mode increase
monotonically with increasing RT for a fixed Rc. Equation (3.8) suggests potential
overstability, e.g. the oscillatory branch exhibited in figure 1. While oscillatory modes
do exist we could not find any critical overstable states.

Let us now focus on quadrant 4 which features a complex mixture of instabilities
due to Rayleigh–Taylor and chemically driven mechanisms. Here solutal effects are
destabilizing (Rc > 0) while heat effects are stabilizing (RT < 0). For Le > 1, we observe
in figure 6 that the density profile features a localized zone where dρs/dz > 0
which is thus susceptible to a Rayleigh–Taylor instability. For a given Rc this
mechanism disappears when RT is decreased, i.e. when stabilizing thermal effects
become dominant. In non-reactive fluids, it is known that the system becomes stable
below a given critical RT for each Rc. This is not what is observed in the reactive case
however because when |RT | is large enough the chemically driven mechanism takes
over. Consider first the small value Rc = 0.2. A close inspection of the most unstable
wavenumber and growth rate shows that the system is stable for −8.8 <RT < − 0.43.
This means that the solutal effect is mostly too weak to destabilize the system and
that the chemically driven effect becomes operative only for strong enough thermal
effects. If Rc is larger, i.e. for Rc = 1 as shown in figure 6, the system becomes
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Figure 6. Similar to figure 4 with (a) most unstable linear eigenfunction along with the basic
density profile ρs(z) for the critical point in quadrant 4 where Rc = 0.2 and RT = −0.4 (Le = 10).
The locally unstable density stratification centred around z = 0 drives a Rayleigh–Taylor (R–T)
instability both below and ahead of the front while the chemical mechanism operates below
the front.

immediately unstable due to the solutal Rayleigh–Taylor mechanism, even when RT

is decreased. This effect weakens when RT decreases, thus increasing static stability,
until the chemically driven effect magnifying when RT decreases takes over. This
results in a non-monotonic change in σmax and kmax with decreasing RT (see figure 6).

The stability behaviour in the presence of chemical reactions thus changes
drastically in all four quadrants.

4. Conclusions
We have analysed a reaction–diffusion–convection model describing convective

instabilities generated in porous media by concentration and temperature gradients
either imposed across a layer of non-reactive fluids or generated dynamically by a
chemical reaction inside a chemical front. Using a linear stability analysis, we have
compared the stability domains of both cases in the parameter space spanned by
the thermal RT and solutal Rc Rayleigh numbers to gain insight into the influence
of chemical reactions on buoyancy-driven instabilities. We find that chemistry has a
significant influence as the region of stability of chemical fronts is much smaller than
its classical hydrodynamic counterpart. The stability region further diminishes with
increasing Le in marked contrast to the classical case.

First, the first quadrant, in which RT � 0 and Rc � 0, is entirely unstable in the case
of chemical fronts. There are no threshold critical values for the Rayleigh numbers
as in the classical hydrodynamic Rayleigh–Bénard type of instability across a fluid
layer in which an adverse imposed linear gradient of temperature or mass must be
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strong enough to overcome stabilizing viscous effects. In the case of chemical fronts
in quadrant 1, the transition zone between the heavy reactants at room temperature
and the hot and light products is so small that we basically have to consider the
Rayleigh–Bénard and Rayleigh–Taylor instabilities between two semi-infinite regions
with the heavy fluid on top of the light one-which is then always unstable.

In addition, three other branches of the stability boundary exist in the (RT , Rc)-
plane. The main difference between the classical and reactive cases exists in quadrant 3
where solutal and thermal effects both contribute to a stable density stratification with
RT and Rc both negative. In non-reactive systems, that quadrant is always absolutely
stable. On the contrary, in the presence of a chemical reaction, buoyancy-driven
instabilities of globally statically stable propagating reaction–diffusion fronts have
been identified. Displaced-particle arguments reveal the roles played by chemistry
and double diffusion in driving the convection.

The branch in quadrant 2 corresponds to an upward propagating front with
RT � 0 and Rc � 0. Instability is driven behind the front by chemistry and ahead
of the front as a local Rayleigh–Taylor instability. It is somewhat surprising that
the classical oscillatory diffusive branch has disappeared in the linear analysis. While
complex eigenvalues are present in the spectrum they never dominate. Oscillatory
states should be pursued in nonlinear studies. The third branch in quadrant 4 (RT � 0
and Rc � 0) where traditional direct double-diffusive modes exist is driven by the same
chemical mechanism as quadrant 3 behind the front, in addition to a locally unstable
stratification that straddles the front. Thus almost all of quadrant 4 is unstable.

We have thus shown that chemical reactions drastically change the stability
properties of fluids with regard to buoyancy-driven instabilities. Most importantly,
we have shown that the general intuition that hydrodynamicists have in mind
when considering a stability plane such as in figure 2 cannot be used if chemical
reactions are at play. Our work should therefore be the starting point of further
examinations of the role played by chemistry in several applications where buoyancy-
driven instabilities are important. First, it would be useful to analyse in detail to
what extent our conclusions carry over to combustion in porous media. All the
elements necessary for the chemically driven instability to operate, i.e. a localized
reaction zone and differential diffusivity of heat and mass, are present. However, in
addition, a theoretical study of the influence of an Arrhenius law and of the validity
of the Boussinesq approximation should be conducted. In the same spirit, it would be
interesting to test the robustness of our findings with regard to the type of kinetics
used in other applications. These include convective instabilities in bio-remediation
or reactive geological flows in porous media for instance. Further studies should
also generalize our results to the case of flows in non-porous media using the full
Navier–Stokes equations.

It should be pointed out that an upward propagating autocatalytic front with
a positive Rayleigh number is identical to a downward propagating front with a
negative Rayleigh number of the same magnitude (D’Hernoncourt et al. 2006). Thus
our theory is easily amenable to experimental verification in an experimental set-up
based on a Hele-Shaw geometry in the wide class of existing autocatalytic chemical
fronts.
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